
Reply to “Comment on ‘Self-organized criticality and absorbing states:
Lessons from the Ising model’ ”

Gunnar Pruessner*
Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom

Ole Peters†

Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard Avenue,
Los Angeles, California 90095-1565, USA

�Received 5 January 2008; revised manuscript received 25 March 2008; published 23 April 2008�

In R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zapperi �Braz. J. Phys. 30, 27 �2000��, Dickman et al.
suggested that self-organized criticality can be produced by coupling the activity of an absorbing state model
to a dissipation mechanism and adding an external drive. We analyzed the proposed mechanism in G. Pruessner
and O. Peters �Phys. Rev. E 73, 025106�R� �2006�� and found that if this mechanism is at work, the finite-size
scaling found in self-organized criticality will depend on the details of the implementation of dissipation and
driving. In the preceding paper �M. J. Alava, L. Laurson, A. Vespignani, and S. Zapperi, Phys. Rev. E 77,
048101 �2008��, Alava et al. show that one avalanche exponent in the absorbing state approach becomes
independent of dissipation and driving. In our reply we clarify their findings and put them in the context of the
original paper.
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In �1� we discussed the implications of the absorbing state
�AS� mechanism �2� if it were to underlie self-organized
criticality �SOC�. One of the key ingredients of the AS
mechanism is that dissipation and driving are made to vanish
in the thermodynamic limit. We showed that criticality would
be reached in the thermodynamic limit for almost any choice
of the scaling with system size of dissipation and driving
�with the effective temperature vanishing, contrary to what is
stated in �3��. While this choice is thus not important to
answer the question if the critical point will be reached, it is
important when addressing the question of how it will be
reached. In particular, we showed that the critical point
would be reached in the limit of slow drive �−��� /� �“too
fast” in �1��, but that the observed finite-size scaling expo-
nents would depend on �−�, and the relative correlation
length � /L would vanish asymptotically.

The present discussion can be phrased in terms of two
statements. �1� SOC is universal. �2� The AS mechanism is
solely responsible for SOC. In �1� we showed that these are
mutually exclusive. If the AS mechanism is the reason for
SOC, then SOC cannot be universal. This would weaken
SOC considerably since studying models as simple as sand-
piles is only sensible if these systems show universal behav-
ior. The other possibility is that SOC is universal, which
would weaken the AS mechanism, because it does not pre-
dict universality. Our analysis was restricted to the finite-size
scaling of AS observables, such as the order parameter, the
correlation length, and the susceptibility, whereas the preced-
ing paper �3� by Alava et al. refers to avalanche characteris-
tics. In the following we assume that what we found out
about the universality of AS observables also applies to ava-

lanches. We emphasize that we do not know whether this is
true; this assumption is made in order to be able to reply to
the comment, which makes the same assumption.

In the following we distinguish between the AS approach
intended to explain SOC, and SOC itself. Alava et al. do not
make this distinction explicit. In the AS approach driving
and dissipation rates are tuned �bulk dissipation as L−� and
driving as L−��, whereas in SOC �boundary dissipation, driv-
ing on a separate time scale� they are set implicitly by the
dynamics of the system. If the AS approach applies to SOC,
then SOC behavior is obtained within the AS approach by
taking the thermodynamic limit. Both, our original article �1�
as well as the preceding paper �3�, are concerned solely with
the characterization of the AS approach.

It is important to stress that in �1� we did not claim that
any exponents, neither those describing avalanches nor those
characterizing the activity, in standard SOC models are non-
universal. This deserves clarification, because the opposite is
stated in the abstract of �3�. As discussed in �1�, there are
instances of SOC exponents being identical across a wide
range of models �4–6�, while others are not �5,6�.

We do claim �with the proviso stated above�, however,
that avalanche-size exponents would be nonuniversal if the
AS mechanism �2� was applicable to SOC �1�. Alava et al.
challenge this claim by showing that within the AS approach
�s is independent of the scaling of driving and dissipation in
the slow driving limit. This limit corresponds to the separa-
tion of time scales in SOC.

In �1� we explicitly mention avalanche exponents only
once: “In the AS approach also the avalanche-size exponents
show a clear, immediate dependence on the choice of the two
exponents � and �.” It is correct that the avalanche-size
exponents �s and DL �see below� depend on � and �, but as
Alava et al. show, for � large enough �s becomes indepen-
dent of � and �. In this case, as we show below, DL none-
theless depends on �. The nonuniversality of DL within the
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AS approach implies that it does not explain universal SOC.
This is the same conclusion we reached by studying AS ob-
servables �order parameter, correlation length, susceptibil-
ity�.

We agree that the derivation in �1� necessarily breaks
down in the large � limit. We explicitly assumed finite
bounds for both � and �, and we did not discuss the case of
� being greater than the dynamical exponent, which is the
regime studied by Alava et al. We agree that this regime is
the most important one for SOC.

Alava et al. have chosen an observable that is independent
of the external drive for sufficiently large �, but its finite-size
scaling turns out to depend on the scaling of the dissipation.
This can be seen by a finite-size scaling analysis of the char-
acteristic avalanche size sc. According to Ref. �3�, Eq. �3�,
sc	�s

D, where �s is some “cutoff scale.” Usually, the expo-
nent D is reserved for the finite-size scaling of sc, also known
as the avalanche dimension �5�, which we call DL in the
following, so that sc	LDL. Combining Eqs. �4� and �3� of �3�,
they find DL=� / �2−�s� with �s being independent of exter-
nal drive and dissipation. This is a very surprising result,
because regardless of whether or not the AS mechanism ap-
plies, the avalanche dimension DL is deeply rooted in the
model and in general, directly related to the field theory of
the corresponding depinning transition �5,7–9�. There are
several models �4–6� which display a universal avalanche
dimension DL and an avalanche-size exponent �s=2
−
1 /DL, which depends on the details of the driving of the
model �5�, with the first moment scaling like �s�	L
1. For
these conservative models, it is straightforward to devise a
method to produce any exponent �s in the interval �2

−2 /DL ,2−1 /DL� by effectively tuning 
1. This can be
achieved by changing the driving mechanism �10�, as the
driving mechanism leaves DL unchanged.

We would have expected that changing 
1 by introducing
dissipation would have the same effect, i.e., varying �s and
constant DL. However, Alava et al. find that DL depends on
�, while �s remains unchanged, a very interesting numerical
finding we do not dispute. It has thus been established that,
under the appropriate conditions, both �s and DL can be
tuned. Importantly, DL can be tuned in the SOC regime of the
AS approach �large �� by changing �.

Inasmuch as avalanche exponents pertain to the discus-
sion the universality of �s within the AS approach supports
the case for universal SOC being generated by the AS
mechanism. But, the implicit finding by Alava et al. that DL
depends on � confirms that, apparently, the AS approach
does not produce universal SOC.

In order to address the question whether the AS mecha-
nism is operating in SOC models �universal or not�, one
needs to probe its presence either directly or test its implica-
tions. In �1� we have shown that the AS mechanism would
�almost always� imply a vanishing relative correlation length
� /L and a finite-size scaling of the AS order parameter, char-
acterized by exponents � /� and 
 /�, that would depend on
the scaling of dissipation and drive, parametrized by � and
�. We stated explicitly how � /� and 
 /� depend on � and
�, while further analysis is necessary for the dependence of
the avalanche exponents on � and �. At the present stage, a
more promising route than studying avalanches therefore
seems to be the study of AS observables in SOC systems.
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�10� As long as the model is conservative, individual particles ef-
fectively perform a random walk and the first moment of the
avalanche size is a function of the spatial distribution of the
driving. For example, if a one-dimensional model is driven at
site x0 with two open boundaries, then the first moment is �L
+1−x0�x0, where L is the system size. By changing x0 as a
power law of L, the exponent 
1 changes accordingly. For
example, x0=�L produces 
1=3 /2.
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